Hydrogen Pathways – User Guide

Keelan O'Neill

Introduction

Welcome to Hydrogen Pathways, our hydrogen supply chain tool, designed to help you estimate costs and emissions across the supply chain. As the world transitions towards a low-carbon economy, hydrogen is emerging as a promising energy vector that can play a significant role in decarbonizing various sectors, including transportation, industry and power generation. Our website provides a comprehensive and user-friendly platform to explore the different stages of the hydrogen supply chain, including production, storage, transport and utilisation, and to assess the environmental and economic impacts of each stage. Whether you are a policy maker, investor, or industry expert, our website can help you make informed decisions about the deployment of hydrogen in your operations.

Disclaimer

The information provided on this website is for educational and informational purposes only. The predictions are based on available data and assumptions and may not reflect the actual costs and emissions of specific hydrogen supply chain pathways.

The predictions on this website do not constitute professional advice or recommendation and should not be relied upon as the sole basis for making decisions related to hydrogen supply chain pathways. The user is responsible for verifying the accuracy and completeness of any information provided on this website before making any decisions.

The owners and operators of this website do not guarantee the accuracy, reliability, suitability, completeness, or availability of any information provided on this website. The owners and operators of this website are not liable for any damages or losses that may arise from the use of this website or the information provided on this website.

The user acknowledges and agrees that the use of this website is at their own risk, and that they have read and understand this disclaimer in its entirety. By using this website, the user agrees to be bound by the terms of this disclaimer.

1. Terminology

The following terminology is used throughout the app:

Scenario – a specific pathway through the hydrogen supply chain. A scenario consists of multiple modules linked together.

Module – a module is a specific element within the supply chain. A module represents an instance of a given technology (e.g. a PEM electrolyser located in Karratha).

2. Scenario creation & analysis

The main aspect of the app is creating hydrogen supply chain scenarios. This section will outline how to create scenarios and get results. Note that in order to save scenarios (and view them again later) it is recommended to register a user. This can be found in the "User" dropdown of the navbar under "Register", or <u>https://h2pathways.azurewebsites.net/user/register</u>.

Hydrogen Pathways -	
	The Hydrogen Pathways App
MANNEARTON	Introduction Welcome to Hydrogen Pathways, our hydrogen supply chain tool, designed to help you estimate costs and an a promising energy vector that can play a significant role in decarbonics, including platform to explore the different stages of the hydrogen supply chain, including production, storage, transport and utilisation, and to assess the environmential and economic impacts of each stage. Whether you are a policy maker, investor, or industry expert, our vebsite can help you make informed decisions about the deployment of hydrogen in your operations. Key Features:
Details Login Register Logout FUTURE ENERGY EXPENSION	 A dynamic data repository A hydrogen supply chain modeling tool Help & Info Get help on using and troubleshooting the tool. See our website disclaimer Transport Penice Storage Utilisation Fransport

To create a scenario:

1. First select "New scenario" from the "Modelling tool" dropdown in the navbar, or at: https://h2pathways.azurewebsites.net/tool/scenarios/create.

2. Now input your scenario name, then click start:

H₂ Hydrogen Pathways 😑	Scenario Setup Provide details on the supply chain scenario
NAVIGATION	
â Home	Step 1/2: Name scenario
▷ Modelling tool >	Scenario name:
Se Manage data >	
⑦ Help & Info >	Start
A User >	
FUTURE ENERGY EXPORTS	Step 2/2: Define parameters

3. The next screen provides a list of configurable parameters specific to the overall supply chain scenario. These are predominantly economic project parameters which impact the calculation of levelized cost. These include:

Lifetime – project lifetime (default is 30 years)

Project commencement - year of project start (default is the next calendar year)

Discount factor – the factor used to discount future cash flows back to present values (default is 8 %). Note that no correction for inflation is made, so this is essentially the "nominal discount factor"

Capex budget – an array which describes the outlay of capital expenditure (Capex) in the first years of the project. The first value represents fraction in first year, second value is fraction of capex in second year etc. For example:

"0.10, 0.60, 0.30" represents 10% Capex spent in 1st year, 60% in 2nd year and 30% in 3rd year.

"0.20, 0.20, 0.20, 0.20, 0.20" represents 20% of Capex being spent in each of the first 5 years.

Please make sure this adds up to 1!

Carbon price – the cost of associated with CO_2 emissions or CO_2 abatement in (US\$/tonne). This is included in OPEX and applied to the calculated "Well-to-gate" emissions of the scenario. If this is left empty, no carbon price is applied.

Click submit once you are happy with selected parameters.

Step 2/2: Define parameter	s	
Lifetime	30	years 🗸
Project commencement	project lifespan 2024	
Discount factor	project commencement year 8.0	pct 🗸
Capex budget	0.10, 0.60, 0.30	
Carbon price	array breaking down CAPEX (e.g. 0.1, 0.6, 0.3 for 1	st, 2nd & 3rd years)
Submit	Price of CO2 abatement. If this is blank, LCOH (w/	EO2) will not be calculated.

4. You then reach the "scenario detail page" (e.g. see below) from here you have multiple options. The first action is to add a module (click "Add module"): this is adding the first module into your scenario.

enario details			
<u>Test scenario</u>			
Modules			
Add Module There are currently no modules i	n the scenario.		
Scenario actions:			
Add basis	Define the basis module - this sets the overall project scale (e.g. production module with scale of 100 tpd)	Edit parameters	Change the scenario name or overall project parameters
Run analysis	Calculate results for scenario	Clone scenario	Clone the current scenario
Run analysis			
Visualise	View a network diagram of the scenario	Scenario list	Go to the list of scenarios

5. This will bring you to the module creation page (see below). There are 3 steps to module creation: (a) classification, (b) location and (c) parameter definition.

Module Setup Provide details on th	e given module			
Step 1/3: C	lassify module			
Precursors: This is the fir (Suggest star	st module ting with a resource)	Select stage: Select a stage 🗸	Select technology:	Select sub-technology: Save classification
Step 2/3: N	Nodule location			
Step 3/3: P	arameter definition			

a. <u>Module classification</u> involves defining the "precursors", "stage", "technology" and (maybe) "subtechnology" of the module. For the first module there will be no precursors – details on linking precursors will be discussed in the next module. It is recommended to always begin with a "Resource". In the example scenario, we will begin with a solar module, thus select "Resource" as the stage, "Electricity" as the technology and "Solar" as the subtechnology. Click "save classification" once selected.

Have a flick through some of the different stage/technology/subtechnology options – a list of the currently available options is provided in Appendix A.

M Pro	odule Setup wide details on the given module				
	Step 1/3: Classify module				
	Precursors: This is the first module (Suggest starting with a resource)	Select stage: Resource	*	Select technology:	Select sub-technology: Solar v
	Step 2/3: Module location				
	Step 3/3: Parameter definition				

- b. Now select the <u>module location</u>. This can be done by either clicking on the map at the relevant location or inputting an address (the alternate will update accordingly). The location is used for:
- In all modules, it determines the country-specific "location factor" applied to CAPEX and Fixed OPEX.
- For solar and wind modules (only in Australia), it determines the appropriate capacity factor to use (i.e. according to solar irradiation or wind speed data). This is used to determine the appropriate scale of the module.
- For modules which are the precursor to a "transport" module (typically this will be a "storage" module) the location of this module is the "start-point" of the transit, e.g. if Liquid H2 tanks are followed by a Liquid H2 trucking module, the location of the Liquid H2 tanks is the start of transit, and the location of the trucking module is the end of the transit.
- For "transport" modules the location determines the "end-point" of the transit.

For the solar module example, a location in the Karratha industrial estate will be used.

Step 1/3: Classify module	
Step 2/3: Module location	
Address:	
3890 Coolawanyah Road, Karratha Industrial Estate Western Australia 6714, Australia	
Latitude: -20.7621 Longitude: 116.8843	
200 km 100 mi Leaflet Map data © OpenStreetMap contributors, CC-BY-S/	
	Save location

c. The final part of module creation is <u>parameter definition</u>. The parameters which are presented are dependent on the module classification (e.g. for a production module we might see electricity usage requirements, whereas for a road transport module we would see number of trailers and fuel usage).

For the solar module – the capacity factor is determined from solar irradiation data from the module location. The "life cycle emissions rate" is localised according to location data.

For any parameter, you can change the dropdown from "Literature default" to "User defined" in order to edit the parameter value & select your own value.

Module Setup				
Provide details on the given module				
Step 1/3: Classify module				
Step 2/3: Module location				
Char 2/2 Demonstra de Calibier				
Step 3/3: Parameter definition				
Technical				
Capacity factor	Literature default 🗸 🗸	25.1	96	
		capacity factor based on location		
Environmental				
Life cycle emissions rate	Literature default 🗸 🗸	0.033	kg-CO2e/kWh	
		localised life cycle emissions rate		
				Save parameters

Literature default values are pulled from the app database & averaged.

Once you are happy with the parameters, click save parameters.

6. The module is now included in the "scenario details" page

nario details							
<u>Test scenario</u>							
1odules Add Mo	odule]					
Index	Stage	Technology	Subtechnology	Precursors	Edit	Delete	Clone
1	Resource	Electricity	Solar		C	Ē	Ġ
cenario actions:	1-			F - 10			
Add Das	ils	Define the basis module - this sets the o	verall project scale	Edit parameters	Change the scenari	o name or overall pr	oject parameters
Run analysis Calculate results for scenario		Clone scenario	Clone the current s	cenario			
Visualise View a network diagram of the scenario		Scenario list	Go to the list of sce	narios			

7. Now add a second module (click "add module" again). This time we are going to add a desalination plant.

Module Setup Provide details on the given module			
Step 1/3: Classify module			
Precursors: (#1) Resource (Electricity - Solar)	Select stage:	Select technology:	Select sub-technology:
Step 2/3: Module location			
Step 3/3: Parameter definition			

8. Desalination requires electricity, so we will need to select the solar module as an input. However, if you don't the app should tell you it is required when you click save classification. This will happen for all module technologies – the app should tell you which precursors are required. If you don't have that precursor created yet (e.g. if you had no electricity modules at this stage), you will have to create that module first.

Invalid o	classification						2
Mod	ule Setup e details on the given module						
	Step 1/3: Classify module						
	Precursors: [#1] Resource (Electricity - Solar)	Select stage: Resource	~	Select technology:	~	Select sub-technology:	~
	Technology "Desalination" requires "Electricity"	as a precursor				Save classification	
	Step 2/3: Module location						
	Step 3/3: Parameter definition						

9. Select the solar module as the precursor (and keep the classification as Resource/water/desalination), then click save again.

Module Setup						
Provide details on the given module						
Step 1/3: Classify module						
Precursors: [#1] Resource (Electricity - Solar)	Select stage:	v	Select technology:	~	Select sub-technology:	~
Technology "Desalination" requires "Electricity" a	s a precursor				Save classification	

10. Set the same location for the desalination module.

Module Setup	
Provide details on the given module	
Step 1/3: Classify module	
Step 2/3: Module location	
Address:	
3890 Coolawanyah Road, Karratha Industrial Estate Western Australia 6714, Australia	
Latitude: -20.7611 Longitude: 116.8850	
Image: Comparison of the provide o	
	Save location

11. View the parameters associated with desalination – here we will set the capacity factor to be "User defined" as 95%. Click save parameters once happy

Module Setup Provide details on the given module				
Step 1/3: Classify module				
Step 2/3: Module location				
Step 3/3: Parameter definition				
Technical				
Capacity factor	User defined	♥ 95	96	
Environmental		NO PARAMETER DATA FOUND		
Life cycle emissions rate	Literature default	♥ 0.163	kg-CO:e/(kL-water)	
Inputs				
Electricity usage	Literature default	✓ 4.0	kWh/(kL-water)	
			Save parameters	

12. The scenario detail page now shows up as below. Note that desalination module has "1" in precursors to note that module #1 (i.e. Solar) is a precursor to it.

<u>est scenario</u>							
odules							
Add M	odule						
Index	Stage	Technology	Subtechnology	Precursors	Edit	Delete	Clone
1	Resource	Electricity	Solar		Ľ	۵.	
2	Resource	Water	Desalination	1	Ľ	Û	G
enario actions:							
Add ba	sis	Define the basis module - this sets the	overall project scale	Edit parameters	Change the scenario	o name or overall pr	roject parameters
Run ana	lysis	Calculate results for scenario		Clone scenario	Clone the current so	cenario	
				Conorio list			

- 13. Run through a similar process in creating modules the following modules (all in same location, use the default parameters except in storage as below):
 - a. Production/Electrolysis/Alkaline with both Solar & desalination as precursors
 - b. Conversion/Compression with both Solar & Alkaline as precursors
 - c. Storage/Compressed H2/Tanks with the conversion module as a precursor however set the "storage timeframe" to be 7 days (user defined).

Storage timeframe	User defined	~	30.2	day

14. Once complete, the scenario detail page should look as follows. Now that we have all the relevant modules defined, the final thing to do before running analysis is to <u>define a scenario</u> <u>basis</u>. Click "add basis".

e <mark>st scenario</mark>							
Add M	<i>l</i> odule						
Index	Stage	Technology	Subtechnology	Precursors	Edit	Delete	Clone
1	Resource	Electricity	Solar		C	Û	ß
2	Resource	Water	Desalination	1	C	Û	G
3	Production	Electrolysis	Alkaline	1 & 2	Ľ	Û	G
4	Conversion	Compression		1 & 3	Ľ	۵	G
5	Storage	Compressed H2	Compressed H2 Tank	4	C	۵	G
enario actions							
Add b	asis D	efine the basis module - this sets the overa	ll project scale	Edit parameters	Change the scenario nan	ne or overall proje	ect parameters
Run an	alysis	alculate results for scenario		Clone scenario	Clone the current scenar	io	
	ise			Scenario list	Co to the list of scenarios		

15. Choose which module you wish to specify as a basis. In this example, the production module (electrolysis/alkaline) will be selected.

Step 1/2: Basis selection
Select basis:
[#1] Resource (Electricity - Solar)
[#2] Resource (Water - Desalination)
• [#3] Production (Electrolysis - Alkaline)
[#4] Conversion (Compression)
[#5] Storage (Compressed H2 - Compressed H2 Tank)
Select

16. Then specify the scenario basis scale (this is the size of that given module). Please specify the true scale, not the nominal scale. In this case, the scale will be set to 100 tonne/day (100,000 kg/day). Note that the scale units will change depending on the module (e.g. scale is in MW for solar or wind and kL/day for water).

The scale of all other modules is calculated from this.

Step 2/2: Set basis scale	
Enter scale of basis - note this should l e.g. a production plant with a nominal	be the true scale (not the nominal scale) capacity of 100 tpd & a 90 % capacity factor has a true production scale of 90 tpd.
100000	kg H2/day 🗸
Set scale	

17. Now click run analysis. If the basis has not been set, or there is an invalid precursor link – the analysis will fail (and the app will tell you this).

odules							
Add M	Module						
Index	Stage	Technology	Subtechnology	Precursors	Edit	Delete	Clone
1	Resource	Electricity	Solar		ß	۵	G
2	Resource	Water	Desalination	1	ß	Û	G
3	Production	Electrolysis	Alkaline	1 & 2	C	â	ß
4	Conversion	Compression		1 & 3	C	۵	G
5	Storage	Compressed H2	Compressed H2 Tank	4	ß	ē	G

18. The app will present you with results for the scenario. This includes a breakdown of levelized cost of hydrogen (LCOH) on the left and emissions intensity (right).

The table at the bottom provides numeric values for the scenario (top row) and each module (subsequent rows).

19. You can find further details on each individual module by clicking on the name of that module, e.g. clicking on "[#1] Resource (Electricity – Solar) brings up:

odule Details	
[#1] Resource (Electricit	ry - Solar)
Scenario:	Test scenario
Stage:	Resource
Technology:	Electricity
Subtechnology:	Solar
Economics	2.68.1155//Hka)
LCOH (w/CO2):	2100 03-17 11 1 <u>8</u> 0
CAPEX:	903,000,000 US\$
Variable OPEX:	0 US\$/year
Fixed OPEX:	30,100,000 US\$/year
Environmental Total_Ica:	65000.0 t-COse/year
Total_w2g:	0.0 t-CO:e/year
Rate_lca:	1.78 kg·CO2e/(kg·H2)
Rate_w2g:	0.0 kg·CO2e/(kg·H2)
Technical Scale:	225.0 MW
Nameplate capacity:	896.0 MW
Resource usage:	225.0 MW

That's it! The scenario is now defined, and results have been calculated.

3. Scenario editing and cloning

3.1 Edit scenario parameters

If you wish to change specific parameters, both the scenario and modules can be updated. To edit scenario parameters (including name), click "Edit parameters":

inario details <u>Test scenario</u> Modules Add M	Vodule						
Index	Stage	Technology	Subtechnology	Precursors	Edit	Delete	Clone
1	Resource	Electricity	Solar		C	۵	G
2	Resource	Water	Desalination	1	C	۵	G
3	Production	Electrolysis	Alkaline	1 & 2	C	۵	G
4	Conversion	Compression		1 & 3	C	۵.	G
5	Storage	Compressed H2	Compressed H2 Tank	4	C	۵.	G
Scenario actions Add b Run an:	asis c	befine the basis module - this sets the over alculate results for scenario	ali project scale	Edit parameters Change Clone scenario Clone t	the scenario nar	ne or overall proje rio	ct parameters

This will bring up the form similar to scenario creation (with name and parameters) – edit these to change such values for the scenario.

3.2 Edit module parameters

To edit parameters of a specific module, click the "edit" link button for that module - e.g. to modify the electrolyser, we would click on the link in row three.

nario details							
Test scenario	<u>)</u>						
Modules Add I	Module						
Index	Stage	Technology	Subtechnology	Precursors	Edit	Delete	Clone
1	Resource	Electricity	Solar		C	Ô	G
2	Resource	Water	Desalination	1	ß		G
3	Production	Electrolysis	Alkaline	1 & 2	ľ	<u>۵</u>	G
4	Conversion	Compression		1 & 3	ß	۵	G
5	Storage	Compressed H2	Compressed H2 Tank	4	Ľ		G
Scenario actions	:						
Add b	asis D	efine the basis module - this sets the over	all project scale	Edit parameters Chang	ge the scenario na	me or overall proje	ct parameters
Run an	alysis	alculate results for scenario		Clone scenario Clone	the current scena	rio	
Visua	lise	in a natural disease of the second		Scenario list	the list of scopario		

The module classification, location and parameters can all be changed. Here, the electrolyser will be changed to a PEM (instead of an alkaline).

Module Setup Provide details on the given module			
Step 1/3: Classify module			
Precursors: 2 [#1] Resource (Electricity - Solar) 2 [#2] Resource (Water - Desalination) [#4] Conversion (Compression) [#5] Storage (Compressed H2 - Compressed H2 Tank)	Select stage: Production	Select technology: Electrolysis	Select sub-technology:
			Save classification

Note that in this case – we have changed the technology of the "basis module" – thus the basis will need to be removed from the scenario and need to be re-added – the app tells you this (top message in below screenshot).

Also note that if you change the module classification – this may allowable precursor links – you may need to modify other modules accordingly.

Basi	s module has changed: removing basis from scenario.
Save	ad module classification.
M	odule Setup
Pro	xvide details on the given module
	Step 1/3: Classify module
	Step 2/3: Module location
	Address:

3.3 Cloning scenarios

A scenario can be "cloned" to produce a replica. This is very useful for scenario comparisons. For example, imagine we want to compare the above scenario to a similar one which uses liquid hydrogen storage instead of compressed hydrogen. Start by clicking "Clone scenario":

Add I	Module						
Index	Stage	Technology	Subtechnology	Precursors	Edit	Delete	Clone
1	Resource	Electricity	Solar		Ľ	۵	ß
2	Resource	Water	Desalination	1	C	۵	ß
3	Production	Electrolysis	Alkaline	1 & 2	Ľ	۵	ß
4	Conversion	Compression		1 & 3	Ľ	â	G
5	Storage	Compressed H2	Compressed H2 Tank	4	Ċ	۵	G

Now provide a name for the new scenario & then click clone:

Clone Scenario			
Provide new name (for clone): Liquid hydrogen scenario Clonel			

This produces a clone of the previous scenario. You can now edit individual modules (e.g. conversion and storage modules) to create alternative pathways:

<u>iquid H2 scen</u>	ario						
Aodules	Mandala						
Add	Module						
Index	Stage	Technology	Subtechnology	Precursors	Edit	Delete	Clone
1	Resource	Electricity	Solar		ß	Ē	G
2	Resource	Water	Desalination	1	C	۵.	ъ
3	Production	Electrolysis	Pem	1 & 2	Ľ	۵	
4	Conversion	Liquefaction		1 & 3	ß	ē	G
5	Storage	Liquid H2		4	Ľ	ē	G
icenario actions:							
Add t	pasis Defin	e the basis module - this sets the overall	project scale	Edit parameters	Change the scenario na	me or overall project p	parameters
Run ar	nalysis Calcu	late results for scenario		Clone scenario Clone the current scenario			
Visua	alise	a network diagram of the scenario		Scenario list	Go to the list of scenarios		

4. Comparing multiple scenarios

A scenario comparison can be created from the "view scenarios" screen:

H2 Hydrogen Pathways ≒	The Hydrogen Pathways App
NAVISATION Modelling tool Modelling tool Mew scenarios View comparisons View comparisons	Introduction Welcome to Hydrogen Pathways, our hydrogen supply chain tool, designed to help you estimate costs and emissions across the supply chain. As the world transitions towards a low-carbon economy, hydrogen is emerging as a promising energy vector that can play a significant role in decarbonizing various sectors, including platform to explore the different stages of the hydrogen supply chain. Our website provides a comprehensive and user-friendly maker. investor, or industry expert, our website can help you make informed decisions about the deployment of hydrogen is not port operations. Resources Key Features: Key Features:
Manage data Manage data Help & Info Help & Info Suser	A dynamic data repository A dynamic data repository A hydrogen supply chain modelling tool Help & Info Generesed Compressed Lucut Ity Storage Usual Ity Sto
FUTURE ENERGY EXPORTS	Transport Inputine South of the second seco

Select the scenarios you wish to compare (by checking the box in the select column), e.g. here scenarios #1, 3, 5 and 11 have been selected.

Hydrogen Pathways 😑	select	~	Go			
NAVIGATION	Index	Select	View	Delete	Owner	Name
	1			₿	Default example	Solar / PEM / Compressed H2
	2		۵	۵	Keelan O'Neill	Wind / Alkaline / Liquid H2
	3			Ð	Default example	Coal Gastification w/ CCS
	4	0	6	Ð	Default example	SMR
EXPORTS Consuming Transmission	5		۵	۵	Default example	SMR w/ CCS
	6		6	e	Default example	ATR w/ CCS
	7	0	6	e	Default example	ATR
	8		۵	e	Default example	Ammonia trucking
	9		۵	8	Default example	Toluene trucking
	10		۵	۲	Default example	TD pyrolysis
	11		6	e	Default example	TCD pyrolysis
		-	-	-		

From the dropdown (above the table), click on "Compare selected scenarios", then click "Go"

Hydrogen Pathways ≞	Scenario list								
NAVIGATION									
A Home	New Sce	mario							
▷ Modelling tool >	Batch operations:								
B Manage data →	select	select v Co							
() Heip&into > A User >	Compare selected Delete selected so Clone selected sce	scenarios enarios narios	View	Delete	Owner	Name			
FUTURE	1		B	8	Default example	Solar / PEM / Compressed H2			
EXPORTS	2		۵	£	Keelan O'Neill	Wind / Alkaline / Liquid H2			
	3		۵	e	Default example	Coal Gasification w/ CC5			
	4		0	8	Default example	SMR			
	5		6	8	Default example	SMR w/ CCS			
	6		B.	A	Default example	ATR w/ CCS			

Create a name for the comparison, then click compare:

Give the following a little bit of time $(\sim 1 \text{ min})$ – this is calculating results for all scenarios. The next screen will then pull up a comparison of LCOH & GHG emissions across each of the selected scenarios. Note that modules have been clustered according to technology type (see module classifications in Appendix A) – so similar subtechnologies (e.g. Solar, Wind & grid are all subtechs of electricity) will be clustered together.

Appendix A. Module classification options

The following details the categorisation options of different module technology options. Modules are classified according to "stage", "technology" and (maybe) "subtechnology". The stage is the position within the supply chain. The current development of the supply chain tool incorporates eight stages which are summarised in **Table 1** including a description and example technologies.

Table 1 Classification of stages within the hydrogen supply chain.	Acronyms in example technologies: steam
methane reforming (SMR) and Carbon capture and storage (CCS).	

Stage	Description	Example technology
Resource	Any feedstock or input required for hydrogen production.	Electricity, water
Production	A process which generates hydrogen.	Electrolysis, SMR
Conversion	A process which transforms hydrogen from a produced state into a state suitable for transport.	Liquefaction, Ammonia generation
Storage	Liquid H ₂ , Ammonia	
Transport	Movement of hydrogen (in converted state) between two locations.	Pipeline, Truck, Ship
Release	The transformation of hydrogen from a converted state back to a usable state (opposite of conversion).	Regasification, Dehydrogenation
Utilisation	The application or use of hydrogen.	Chemical feedstock, power generation
Ancillary	Supporting or alternate technologies attached to the supply chain.	CCS

The main bulleted list (below) is leveled as follows:

• Stage

- Technology
 - Subtechnology

The following bulleted list breaks down the stages into possible technology options. Please note not all technologies have a subtechnology (e.g. natural gas or coal).

- Resource
 - o Electricity
 - Solar
 - Wind
 - Grid
 - o Water

- Desalination
- Mains
- Natural gas
- o Coal
- Production
 - o Electrolysis
 - PEM (Polymer electrolyte membrane)
 - Alkaline
 - SOE (Solid oxide electrolyser)
 - Reforming
 - SMR
 - SMR w/ carbon capture
 - ATR
 - ATR w/ carbon capture
 - o Pyrolysis
 - Thermal decomposition (natural gas fired)
 - Thermocatalytic decomposition (natural gas fired)
 - Plasma pyrolysis
 - o Gasification
 - Coal gasification
 - Coal gasification w/ carbon capture
- Conversion
 - Compression
 - Liquefaction
 - Ammonia hydrogenation
 - Methanol hydrogenation
 - LOHC hydrogenation
 - Toluene hydrogenation
 - N-Ethyl Carbazole hydrogenation
 - Dibenzyltoluene hydrogenation
- Storage
 - Compressed H2
 - Liquid H2
 - o Ammonia
 - o Methanol
 - o LOHC
 - Toluene/Methylcyclohexane
 - N-Ethyl Carbazole/Perhydro-N-Ethyl Carbazole
 - Dibenzyltoluene / Perhydro-Dibenzyltoluene
- Transport
 - o Pipeline
 - Hydrogen pipeline
 - o Road
 - Compressed H2 trucking
 - Liquid H2 trucking
 - Ammonia trucking
 - Methanol trucking
 - LOHC trucking
 - Shipping
 - Liquid H2 shipping

- Ammonia shipping
- Methanol shipping
- LOHC shipping
- Release
 - o Expansion
 - Regasification
 - Ammonia dehydrogenation
 - Methanol dehydrogenation
 - LOHC dehydrogenation
 - Methylcyclohexane dehydrogenation
 - Perhydro-N-Ethyl Carbazole dehydrogenation
 - Perhydro-Dibenzyltoluene dehydrogenation
- Utilisation
 - o Feedstock
 - Steel
 - \circ Power generation
 - Fuel cells
 - Gas turbine
- Ancillaries
 - CCS technologies
 - CO2 compression
 - CO2 pipeline
 - CO2 storage